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ABSTRACT

A steady, two dimensional cellular convection modifies

the morphological instability of a binary alloy that un-

dergoes directional solidification. When the convection

wavelength is far longer than that of the morphologi-

cal cells, the behavior of the moving front is described

by a slow, spatial-temporal dynamics obtained through

a multiple-scale analysis. The resulting system has a

'parametric-excitation' structure in space, with complex

parameters characterizing the interactions between flow,
solute diffusion, and rejection. The convection stabi-

lizes two dimensional disturbances oriented with the flow,

but destabilizes three dimensional disturbances in gen-

eral. When the flow is weak, the morphological instabil-

ity behaves incommensurably to the flow wavelength,

but becomes quantized and forced to fit into the flow-

box as the flow gets stronger. At large flow magnitudes

the instability is localized, confined in narrow envelopes

with cells traveling with the flow. In this case the so-

lutions are discrete eigenstates in an unbounded space.

Their stability boundary and asymptotics arc obtained

by the WKB analysis.

1 INTRODUCTION

In the absence of flow, the morphological instability of

a binary alloy undergoing directional solidification is

driven by the adverse gradient of solute concentration at

the solid-liquid interface. This instability occurs when

the interface advances with a speed I" greater than a crit-

ical value __., when cellular patterns form on the mov-
ing front. When the liquid (melt) is flowing, the solute

concentration profile is altered. In general, the liquid

motions may delay or promote the instability depending
on the interactions between the solute and momentum

transport.

Flow-modified morphological instability has been

studied by many authors (e.g. see [6] for a review).

Flows can be inherent in the nature of the solidifying
process, such as solutal convection in a density strati-

fied melt ([3], [4]). The motion here is due to buoy-

ancy effects that exist even when the interface is not de-

formable. Flows can also be imposed through a far-field

pressure gradient. In this case the purpose of the flows

may be in the interest of material processing. The exam-

ples include plane Couette flow 15], asymptotic suction

profile ([7], [8], [11]), and stagnation-point flow [1].

In the present analysis we examine the morphologi-

cal instability of a pre-existing cellular convective flow

(see figure 1). Such flows exist when hydrodynamic in-

stabilities occur before the morphological instability, or

when the liquid is subjected to a high-frequency vibra-

tion or acceleration (g-jitter). The flow is considered to

be spatially periodic, with a wavelength 27r/o typically

much longer than the wavelength 27r/;_ of the morpho-

logical instability. This assumption is appropriate for

metallic alloys for which typical Schmidt numbers are

large, and the viscous length-scale can be ten or hun-

dred times longer than the diffusion length-scale. The

present work is related to that of Btihler & Davis [2],

in which numerical calculations to the linear problem
have been performed. Their study showed that in such

flows the morphological instability can be confined in

localized, stationary envelopes distributed periodically

on the interface. Each envelope contains many morpho-

logical cells traveling in the flow direction. The stability

and mechanism of the onset of this solution have yet to
be revealed.

We treat the solutal-momentum transport as a per-
turbation of the Mullins-Serkerka problem [10]. The

'pure' (no-flow) morphological instability has its criti-
cal wavenumber/_c at a critical morphological number

-M-c,as shown schematically in figure 2a. For the small-

ness of _ comparing with/3_, we evoke a multiple-scale

analysis near the critical point (/_,., Me). The resulting

dynamics has a 'parametric-excitation' form in the slow,

spatial variable, where the periodic coefficients are gen-

erated by the cellular flow. The linear problem is then
solved by the numerical branch-tracing technique with

the asymptotic structures obtained through a WKB-type

analysis.

We observe that disturbances (rolls) perpendicular

to the flow (figure 2b) are stabilized, since the tangential

component of the flow either compresses or stretches

the morphological cells along the interface. That is, a
wave structure which is unstable without the flow has

now been altered and pushed to the regime where the

surface tension or solute diffusion help to stabilize. In

contrast, rolls aligned with the flow (figure 2c) are desta-
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Figure 1: Schematic diagram for a spatially periodic

flow impressing on the solid- liquid interface of a binary

alloy.

Flow

,i

-1 (a) (b)
M

Mc (c)

{]c Y[---x //0

d)

Figure 2: (a) Marginal stability diagram of the pure

morphological instability. Solutions in hatched area are

unstable. The morphological cell bas a wave-vector 09)

parallel, (c) perpendicular, and (d) an angle 0 to the flow.

bilized by the normal flow component. The morpholo-
gies have incommensurate structures (aperiodic in space)

when the flow is weak, and develop localized wave en-

velopes, as observed in [2], when the flow strength in-

creases. The stability boundary and the onset of the
traveling cells are identified.

2 SOLUTAL TRANSPORT EQUATIONS

Consider a dilute binary alloy solidifying into a cellular
flow field. The averaged solid-liquid interface moves in

a constant velocity I'. The solute rejected on the in-

terface has a partition coefficient k and diffusivity D in

the liquid. We invoke the 'frozen temperature approx-

imation' [9] that gives the temperature T in the solid

and liquid permanently by T = To + Gz, where G

is the imposed temperature gradient, and To is a ref-
erence temperature. The coordinate variable z is fixed

on the moving front with positive z-direction pointing

to the liquid. The interfacial coordinates are spanned by

STATE

the (z, y)-axes. The temperature will not be disturbed

when the thermal boundary layer is far thicker than the

momentum and concentration boundary layers.

We choose the velocity, time, length, and concen-

tration scales to be 1", D/I "2, gc = D/I', and Ac =

(1/k - 1)co,, respectively. Referred to those scalings

and chosen coordinates, the solutal transport equation

in the liquid can be written

Sc -I {O_v + (v - _) •Vv} = -Vp + V-"v,
(1)

V.v=O, Ote+(v-_,).Vc=V2c.

In the above formulation we have assumed the mclt to

be an incompressible, Newtonian liquid. The Schmidt

number Sc = u/D measures the strength of liquid vis-

cosity to the solute diffusivity.

On the solid-liquid interface z = h(.r, y, t), the no-

slip condition v = 0 is applied. It is also assumcd that

the density change upon solidification is negligible, and
the velocity v approacbes the far-field distribution v_

2rr

as z --_ ec. The field v_ is _- periodic in z and is the
driving force of the convective flow. The solute bound-
ary conditions on the interface consist of the mass con-

servation law and a local thermodynamic equilibrium:

v,,{(1 - k)c+ k} = -fi-Vc (2)

M lh = 1 - c+ 2F_-(h). (3)

Here, fi is the unit normal vector pointing into the liquid

phase, _,,, the speed of the front normal to itself, and _;

the mean curvature, a functional of the interface shape

function h. The mass conservation law (2) assumes that

solute diffusion in the solid is negligible comparing with

that in the liquid. The Gibbs-Thomson condition (3)
depicts the alteration of temperature of interface from

the equilibrium melting temperature of the pure solvent
due to the presence of solute (constitutional undercool-

ing) and the curvature of the interface itself (capillary

undercooling). The morphological number and surface

energy parameter are given by

m G,, Tm 7
M - F =

G ' mGcf_L_,

where Gc = -Ac/t'c measures the concentration gradi-

ent. The liquidus slope of the phase diagram is denoted

by m, and the parameters 2,, Tin, L _. stand for surface

tension, solvent melting temperature, and latent heat per

unit volume, respectively.

3 BASIC STATE

2rr
The given cellular flow has a spatial period -3-, which
is considered to be much longer than the morphologi-
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4 DYNAMICS IN SLOW VARIABLES

cat length-scale t_c. The velocity field is represented by

a simple sinusoidal function in the direction x, and de-

cays to zero at the interface exponentially. We use P to

denote the value of the far-field velocity. Its tangential

component is written

u = - { 1 - e _h-:)/*}P sin ax. (4)

The parameter s distinguishes a general class of flows

[2]. Its magnitude represents the thickness of the vis-

cous boundary layer near the interface. Flow type in
(4) is motivated by the 'asymptotic suction profile', in

which the remote field, P sin ax, is replaced by a con-

stant, and the parameter s is equivalent to the Schmidt

number So. The asymptotic suction profile is an exact

solution to the momentum equation, while the remote

flow (4) serves as an approximation for <_<< 1 and flows
near the interface. This enables us to simplify the anal-

ysis and consider only the situation of large Schmidt-

number, metallic alloys (St. _ _c). Consequently, the
liquid inertia is neglected, and the parameter s can take

any positive value (0 < s < ec).

Flows with s _< 1 can occur in a Hele-Shaw-like ap-

paratus for example, where the close proximity of the

sidewalls creates a thin viscous boundary layer. Bound-
ary layers of exponential type are also observed in elec-

trically conducting liquid with flows induced by strong
magnctic fields. For those examples the spatial period

2__can be introduced through solutal buoyancy or mag-
fl

netohydrodynamic instability.

While the flow field is treated as an approximate so-

lution to the momentum transport equation, the result-

ing solutal and interfacial profiles (co, h0) can bc ob-
tained by introducing the expansions

co(c_.r, z) _ e h°-: + _5fl (z) cosax,

h0 (ax) ~ 0 + t_af., (z) cos az,
(5)

into the solutal transport equation and boundary condi-

tions. Functions fl and f_ can be obtained in a straight-
forward manner. In (5) we have rescaled the flow effects

and employed a expansion parameter a?/[2], where

to indicate the order of magnitude of the flow pertur-

bations. The expansion uses that fact that the solutal

and interfacial shape functions are weakly perturbed off

the profiles of the quiescent case as cr_ << 1. The pa-

rameter 6 here represents the magnitude of velocity near

the interface when s << 1, and the velocity gradient

when s >> 1. The scaling is introduced in the expan-

sions, since only the magnitude of the flow is important

when the concentration boundary layer is subjected to

an extremely thin viscous layer, while for a thick vis-

cous layer only the velocity gradient near the interface

is relevant to the convective transport.

4 DYNAMICS IN SLOW VARIABLES

The imposed flow field breaks the rotational symmetry

of the plane surface. We shall subject the basic state

(4, 5) to a 'roll-like' disturbance, with an angle 0 to the

flow direction (figure 2d). Recall that, in the absence

of flow, the most dangerous perturbation is the normal

mode e i_gc.(x,y) at the critical morphological number M_.

In the case with flow the motion introduces a slow, spa-

tial change. It is thus reasonable to assume that the most

dangerous disturbance now has a form f(cr)e J''(_''y_,

¢ << 1, where f(e.r) is a slowly varying function. The

parameter • enables us to perform a multiple-scale anal-

ysis near the point of (13_,M_) (see figure 2).

Formally, we assume a perturbation expansion:

3[ -1 _ M,71- ple2m, o _ ea, _ _ it.,.e25,

7- = l13e2t, r1= 6x, ( = e2X,

'//' _" '//'0 -I- {f"//'l (T, 7], _, Z) -1- ('2U 2 -]-

fatt3}ei&(x'_) + {c.c.},

where u = (c, h), {c.c.} represents complex conjugate,
and Its are coefficients which will be determined later

to renormalize the slow-variable dynamics. By substi-

tuting the above expansions into the governing transport

equations, and collecting the like powers of e, we arrive

at a series of linear problems, which can be written as

Lul = 0, O(¢)

Lu2 = FI(ul), 0(_ 2)

Luj = F',,(ul, u_), O(•3),

where L is the linear operator of the no-flow case. Since

the operator L is singular, the solvability condition is

necessary to solve ui at each order. The quadratic na-

ture of the turning point at (3_, Me) results in the inho-

mogeneous term F1 (u_) that is already in the range of

L. The leading-order behavior of (cl, hi ) is then deter-

mined by the solvability condition at O(e3). This proce-

dure results in a dynamical system in the slow variable

(dropping subscript '1 '):

O_h = {m + i_ cos 0 sin ar/}h + {cos O0,j}2h -

ahlht _ + O(eaScosarlh), (6)
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5 LINEAR STABILITY ANALYSIS
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Figure 3: Characteristic curves for the 2d-roll equation.

Shaded area represents solutions that are incommensu-

rate with the flow. Solid circles are double degener-

ate points. The arrow indicates a path showing flow-

induced stability. Symbol 'S' denotes stability, 'U' de-

notes instability, and 'MSB' denotes marginal stability

boundary.

with appropriate constants lq. The Landau constant a

determines the supercriticality (a > 0) or subcriticality

(a < 0) of the system. When _ _= 0, equation(6)re-

covers the system of the pure morphological problem in

[12]. Equation(6) is written in the form for which the

morphological instability has an O(1) wavenumber in
the remote-flow direction (cos O = O(1), cf. figure 2b).

In this case the flow component _ sin at/ tangential to

the interface has the leading-order contribution, and the
normal component o6 cos ol 1 is formally O(e). That is,

not until very close to the stagnation points (q = _-_)
does the effect of the normal component enter.

When one rotates the wave-vector of the morpho-

logical cells to be nearly perpendicular to the flow di-
rection, (cos 0 = O(e), cf. figure 2c), the tangential and

normal flow components will have the same orders of
magnitude; equation(6) will then need to be modified.

In this regime we rescale the flow parameter c__ #4eft*

such that the flow interacts with the morphological in-

stability at O(_3). The slow-variable dynamics is then
rewritten

OTh = {m + 5" sin CtrlOo + XaS* cosaq}h +

c20_h-.hltd 2, (7)

where ,k = X(k,l",s) is an O(1) parameter. Equa-
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Figure 4: Characteristic curves for the longitudinal-roll

equation. Shaded area represents solutions that are spa-

tially incommensurate with the flow. The arrow indi-

cates a path showing flow-induced instability. Symbol

'S' denotes stability, 'U' denotes instability, and 'MSB'

denotes marginal stability boundary.

tion (7) is a singular perturbation problem with the surface-

tension force ee0_h now acting as a regularization term.

5 LINEAR STABILITY ANALYSIS

To determine the initial behavior of small disturbances

we neglect the nonlinear terms in (6, 7). It is conve-

nient in the analysis to study only the normal mode:
h(r, r) _ ei_'_hOl), and have the disturbance wave-

vector oriented either with a" or y axis (cf. figure 2b,

c). The deduced system are then referred to as '2d' and

'longitudinal' (3d) rolls respectively, according to their

relevant morphological structures:

2d roll: {m - i_' + i6 sin n,I}h + O_h = O, (8)

longitudinal roll: {m - i_: + 8" sin oO0, +
') 0

XacY* cosaq}h + e-O_h = 0. (9)

As noted, the longitudinal-roll equation is a singular
2 o

perturbation problem; thus the term • O;_h must be re-
tained. The systems have parametric-excitation form,

driven by the imposed flow. In analogy to a pendu-

lum problem, the two 'spatial pendula' here have pe-

riodic spring-constants in accordance with the flow pe-

riod, controlled by complex parameters. The F]oquet

theory describes the complicated nature of the spatial
2rr

behaviors. The coefficients have period -&-, and there
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6 DISCUSSION AND SUMMARY

are solutions in the form

h('7) = e"°¢(o), ¢(,j + 2_/.) = ¢(,7).

Since we are concerned only with the spatially bounded

solutions (eigenfunctions); this demands Re i+ = 0. Fig-

ures 3 & 4 plot the boundaries of those solutions, in

which the lines were obtained by the numerical branch-

tracing technique, and numbers labelled represent the

number of unstable modes (Ira +o < 0) that have lengths

fitted into the flow-box. The branching solutions were

traced in the (+, m, w)-space, while only period _ and
4r_ solutions are plotted. Solutions within the bound-
o

aries are aperiodic functions, and the interracial pertur-

bations are incommensurate (spatially unsynchronized)

with the flow. As the flow rate [+[ increases, the 2d-roll

solution (figure 3) changes from stationary (+, = 0) to

time-dependent modes at the double degenerate points
(solid circles), where branches of solutions collide and

pairs of oscillatory modes (w = +w +) bifurcate. In con-

trast, all solutions of the longitudinal roll are stationary
(figure 4), with the 'incommensurate bands' shrinking

to thin, film-like layers as e --+ 0 +. This behavior sug-

gests that the eigenstates are essentially quantized. That
is, discrete eigenmodes exist in an unbounded state, and

the induced morphology has a structure spatially syn-

chronizing with the flow-periodicity. In the longitudinal-

roll perturbation, this quantization occurs due to the reg-

ularization of the surface tension force (cf. equation 9).

The morphological cells are aligned with the flow, with

a secondary structure near the flow-stagnation points

(figure 5). For the 2d disturbance, the quantization hap-

pens at high flow rates after the double degenerate points.

The oscillatory modes are in agreement with the traveling-
cell solutions observed in [2], in which cells are travel-

ing in the flow direction, with the amplitude confined in

narrow envelopes located between the stagnation points
(figure 6).

Our analysis also indicates that the flow stabilizes

the 2d disturbance since the marginal morphological num-

ber me has been delayed (me > 0), but destabilizes

the 3d disturbance with the instability occurs before the

pure morphological instability (me < 0). A WKB type
analysis delivers the asymptotics of the stability bound-
aries and the local structures:

2d-roll: m_ cx I.IISl_/+,w _ e+,

h --, e -_+_1_118l'/2('1-'7°)_.

longitudinal-roll: m,, _ -1_6*t, co-- 0,

h _ e-t'+l"6*l_+-I(°-'+°)_.

Figure 5: Longitudinal-roll morphology (perspective

view) Solid circles are stagnation points, and arrows the
flow direction.

(a)

0a)

(c)

Figure 6: Two dimensional rolls (side-view) predicted

by the linear stability analysis: (a) pure, (b) incommen-

surate, and (c) localized morphologies. Solid circles are
stagnation points, and arrows the flow direction.

In agreement with the results of the branch-tracing cal-
culation, the eigenmodes have localized structures at the

positions where, for the 2d, the tangential flow compo-

nent is the strongest and, for the 3d, the normal flow

component dominates. The discrete modes are the 'turning-

point' solutions in the WKB analysis.

6 DISCUSSION AND SUMMARY

Linear stability analysis shows the flow stabilizes 2d

but destabilizes 3d disturbances. The mechanism may

be tightly bound with the structure of the marginal sta-

bility curve shown in figure 2a. A disturbance along

the flow direction (figure 6) is compressed or stretched
near the stagnation points by the tangential flow com-

ponent. This changes its wavenumber so that the lo-

cal fl becomes larger or smaller than the critical value

for the pure morphological instability. The surface ten-
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sion force or solute diffusion help stabilize the inter-

face locally. However, when a disturbance has 3d struc-

ture (figure 5), the normal flow component will com-

press the concentration boundary layer at the stagna-

tion points and promotes the constitutional undercool-

ing. This effectively lowers the morphological number
such that the interface is locally destabilized. These two

mechanisms predict that, near the onset of the instabil-

ity, patterns like figure 6 may occur in a confined, 2d ge-
ometry (Hele-Shaw slot, for example). In a fully three

dimensional setting one would expect to see a pattern
close to figure 5, since it is the more unstable.

In summary, we investigate the effects of a cellular
convective flow on the directional solidification of a di-

lute binary alloy. The imposed flow has spatial wavenum-

ber & and strength parameter d that controls the pertur-

bation to the interfacial deformation. A multiple-scale

analysis is performed near the onset of the morphologi-

cal instability, which results in a weakly nonlinear equa-

lion in slow, space and time variables. The dynamics of

the front is parametrically excited by the imposed flow.

Its linear problem is solved by the numerical branch-

tracing method. It is found that the remote, spatially

periodic flow stabilizes 2d disturbances in the flow di-

rection, yet promotes 3d instability. The localized mor-

phological instability previously observed are identified

as the quantization of the eigenstates, in which the un-

stable modes are discrete in an unbounded space, and
the perturbed interfacial structures are forced to be spa-

tially synchronized with the flow. The stability bound-

ary and the asymptotic structure of the eigenmodes are

obtained by the WKB method in the limit of _r --+ 0+.

ACKNOWLEDGMENT

This work was supported by NASA, Microgravity Sci-

ence and Application Program.

REFERENCES

[1] Brattkus, K. & Davis, S. H. J. Cryst. Growth, 89,

423, 1988.

[2] Biihler, L. & Davis, S. H. J. Co, st. Growth, (In

press) 1998.

[3] Coriell, S. R., Cordes, M. R., Boettinger, W.S. &

Serkerka, R. E J. Cryst. Growth, 49, 13, 1980.

[4] Coriell, S. R., & McFadden, G.B.J. Cryst.
Growth, 94, 513,1989.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

Coriell, S.R., McFadden, G.B. & Boisvert, R.E J.

Cryst. Growth, 69, 15, 1984.

Davis., S.H., in: Handbook of Crystal Growth 1,

Hurle, D.T.J. editor, vol. 1 ch. 13, p861. Elsevier
Science Publishers, 1993.

Forth, S.A. & Wheeler, A. A. J. Fluid Mech., 202,

339, 1989.

Hobbs, A. K. & Metzener, P. J. Co, st. Growth,
112, 539, 1991.

Langer, J. S. Rev. Mod. Phys., 52(1), l, 1980.

Mullins, W.W. & Serkerka, R.F.J. Appl. Phys.,
35(2),444,1964.

Schulze, T. E & Davis, S. H. J. Co, st. Growth,
143, 317, 1994.

Wollkind, D. J. & Segel, L. A. Philos. Trans. Roy.

Soc. London A 268, 351, 1970.

233


